Class : Bsc 2	2nd Semester : Third	
Subject: PhysicsPaper: 1, PH: 301 (Thermodynamics and computer programming)		
Co1	Computer programming:	
	understand about the basics knowledge of computer,algorithm development ,flow chart	
	and their interpretations .Basics of Fortran language,input and output statement,	
	executable and non-executable statements.	
Co2	Application of Fortran programming :	
	Students learn to develop the Fortran programme for various mathematical problems.	
Co3	Thermodynamics-1:	
	Understand the basic concepts of thermodynamics, first and second law	
	thermodynamics, Carnot's theorem, joule-Thomson effect, entropy ,entropy of a perfect	
	gas, Nernst heat law(third law of thermodynamics).	
Co4	Thermodynamics-2:	
	Derive Clausius-claperyron and Clausius latent heat equation,	
	Develop thermodynamical relations, thermodynamics func`tions,	
	Apply the Maxwell relations such as relation between two specific heats of gas, variation	
	of energy with volume for perfect gas, Vander wall gas.	
Paper:2,PH:302,waves and optics-1		
Co1	Interference-1	
	Students learn about interference by division of wavefront and difference between	
	biprism and Liyod mirror fringes and phase change on reflection.	
Co2	Interference-II	
	Concepts of interference by division of amplitude and Michelson's Interferometer and	
	its various applications.	
Co3	Diffraction-I	
	Students learn about Fresnel's diffraction, rectangular slit and circular aperture and	
	diffraction due to narrow slit and wire in detail	
Co4	Diffraction-II	
	Fraunhoffer diffraction and its various types are studied in detail. The prism and grating	
	spectra are also differentiated between.	

CLASS: B.SC 2 nd SEMESTER: FOURTH SUBJECT: PHYSICS PAPER: 1, PH- 401, STATISTICAL PHYSICS	
SNO.	COURSE OUTCOMES
co1	STATISTICAL PHYSICS- I: Students understand the basic concepts of probability and probability distribution, constraints, accessible states and statistical fluctuations. The relation between entropy and probability is established.
co2	STATISTICAL PHYSICS-II: The introduction and classification of statistics (classical and quantum) and categorize systems based on types of statistics. M.B. statistics and Maxwellian distribution was studied.
co 3	QUANTUM STATISTICS: The Bose-Einstein and Fermi-Dirac energy distribution law are studied. Understood how F-D and B-E distributions are different and show when they reduce to the M-B distribution.
co4.	THEORY OF SPECIFIC HEAT OF SOLID: Describe and discuss specific heat and lattice vibrations in solids. Dulong and petit law and Einstein's theory and Debye's theory of specific heat are studied. Einstein and Debye theories are compared.
PAPER	: 2, PH- 402, WAVE & OPTICS II
co1	POLARIZATION Student learn about various forms of polarization & analysis of polarized light. Huygens's wave theory of double reflection. Fresnel theory of optical rotation & optical activity is studied.
co2	FOURIER ANALYSIS Students learn the fourier theorem & fourier analysis & various application of fourier theorem for analysis rectangular & triangular waves.
cop3	FOURIER TRANSFORMS & GEOMETRICAL OPTICS I Student study Fourier transform & its properties & application of Fourier transform of various function.
co4	GEOMETRICAL OPTICS II & FIBRE OPTICS Student studied various optical aberrations & their remedies. Theory behind fibre optics their application & advantages also studied.